If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-19.9t-34=0
a = 4.9; b = -19.9; c = -34;
Δ = b2-4ac
Δ = -19.92-4·4.9·(-34)
Δ = 1062.41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19.9)-\sqrt{1062.41}}{2*4.9}=\frac{19.9-\sqrt{1062.41}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19.9)+\sqrt{1062.41}}{2*4.9}=\frac{19.9+\sqrt{1062.41}}{9.8} $
| x+4(3x+1)=12x-3 | | -2(3x-5)-x=-7x-10 | | 5(x-7)=3x+9 | | 4(u-7)-5=-3(-5u+6)-5u | | 3x+9=-9x+7 | | -12x-18=14-(6x-4)-6x | | 7x+9=14−2x | | 3x-5+5x-8=x | | f31=21 | | 3/4(-m+4)=5 | | 28p+7=63 | | 612=18b | | 8x-10=18x-4 | | 3/8r=38 | | 5b=845 | | 10.4w+10.01=9.7w | | 3x-6+x+1=x | | 3(c-15)=9 | | -20+7v-20=12v+20 | | (X+3)2+(x-3)2=-13x | | 49k=21+k | | -26=6(w-6)-8w | | 125m-100m+38,000=40,200-175 | | 2.2+10m=8.81 | | -19m+20=-20m | | -2c+3=17 | | 4x-1=5x=2x-1 | | 13-10z=6z+8z-11 | | 8x-10=18-44 | | 10-3k=-17 | | 3x+4x+2=5x-6 | | 8k-3=8k |